Coherent phonon heat conduction in superlattices.

نویسندگان

  • Maria N Luckyanova
  • Jivtesh Garg
  • Keivan Esfarjani
  • Adam Jandl
  • Mayank T Bulsara
  • Aaron J Schmidt
  • Austin J Minnich
  • Shuo Chen
  • Mildred S Dresselhaus
  • Zhifeng Ren
  • Eugene A Fitzgerald
  • Gang Chen
چکیده

The control of heat conduction through the manipulation of phonons as coherent waves in solids is of fundamental interest and could also be exploited in applications, but coherent heat conduction has not been experimentally confirmed. We report the experimental observation of coherent heat conduction through the use of finite-thickness superlattices with varying numbers of periods. The measured thermal conductivity increased linearly with increasing total superlattice thickness over a temperature range from 30 to 150 kelvin, which is consistent with a coherent phonon heat conduction process. First-principles and Green's function-based simulations further support this coherent transport model. Accessing the coherent heat conduction regime opens a new venue for phonon engineering for an array of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers

Nonequilibrium molecular dynamics (NEMD) simulations on conceptual binary Lennard-Jones systems show that the thermal conductivity (κ) of a superlattice (SL) can be significantly reduced by randomizing the thicknesses of its layers, by which a SL becomes a random multilayer (RML). Such reduction in κ is a clear signature of coherent phonon that can be localized in RMLs. We build a two-phonon mo...

متن کامل

Heat-Transport Mechanisms in Superlattices

Superlattices are important structures for thermoelectric applications because of their potential for achieving high efficiency for thermoelectric energy conversion. Despite numerous theoretical and experimental studies, basic understanding of the thermal conductivity L of superlattices is incomplete. In semiconductors, heat is carried by wave-like lattice vibrations, i.e., phonons, with a broa...

متن کامل

Crystalline-Amorphous Interface: Molecular Dynamics Simulation of Thermal Conductivity

Effect of a crystalline-amorphous interface on heat conduction has been studied using atomistic simulations of a silicon system. System with amorphous silicon was created using the bond-switching Monte Carlo simulation method and heat conduction near room temperature was studied by molecular dynamics simulations of this system. INTRODUCTION As the sizes of electronic devices decrease an increas...

متن کامل

Coherent control of acoustic phonons in semiconductor superlattices

Coherent acoustic phonons are generated in GaAs/AlAs superlattices by excitation with femtosecond laser pulses. Several modes of the acoustic phonon spectrum are observed, in agreement with the effect of zone folding in the mini-Brillouin zone of the superlattice. By applying successive pump pulses we are able to silence the first back-folded mode near q50, while selectively enhancing the coher...

متن کامل

Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering

One dimensional quantum-dot superlattices (1D-QDSLs) consisting of acoustically mismatched materials are demonstrated theoretically to possess sub-1 W m−1 K−1 thermal conductivity in the 50–400 K range of temperatures. We consider coherent Si/Ge 1D-QDSLs, as well as model Si/plastic, Si/SiO2 and Si/SiC 1D-QDSLs. The phonon energy spectra and group velocities are obtained in the framework of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 338 6109  شماره 

صفحات  -

تاریخ انتشار 2012